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Mixing efficiency between different water masses is typically assumed to be constant in diapycnal mixing
parameterizations used in ocean models. As of now, most coarse resolution ocean circulation models
employ a constant mixing efficiency value of 0.2 for the shear driven mixing, internal waves and bottom
boundary layer parameterizations. This study investigates the energetics and mixing efficiency of the
lock-exchange flow at different Reynolds numbers. The lock-exchange experiment resolves Kelvin–Helm-
holtz vortices and is an idealized test case for oceanic gravity currents. At first, the required spatial res-
olution for the direct numerical simulations (DNS) is determined in simulations at a constant Reynolds
number of 3500. The evolution of background potential energy and tracer variance are used to assess
model results. We found that the model spatial resolution should resolve at least the Kolmogorov scale
but not necessarily the Batchelor scale if convergences of background potential energy, tracer variance
and dissipation are considered. Simulations at Reynolds number of 125, 500, 1000, 2500, 3500, 5000,
6000, 10,000 show that the mixing efficiency in the lock-exchange flow is smaller than 0.2, and it satu-
rates around 0.12 when Reynolds numbers exceed the value of 2500.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Mixing is an irreversible process in which energy is extracted
from the mean flow through vertical shear production and destabi-
lizing buoyancy flux (Cushman-Roisin and Beckers, 2011). Turbu-
lent mixing of water masses of different densities is an important
process for both coastal and large-scale ocean circulation. Near
oceanic coasts, mixing is an important consequence of the breaking
of internal waves (Klymak et al., 2012). In the deep oceans, vertical
stratification is maintained by irreversible mixing (Munk, 1966).
The total amounts of mixing and available potential energy
required to mix oceanic water masses are poorly known in the
ocean. Only some estimates are available (Wunsch and Ferrari,
2004). A fundamental parameter needed to estimate mixing is
the mixing efficiency coefficient. One possible definition of mixing
efficiency is the ratio of irreversible mixing to the sum of irrevers-
ible mixing and kinetic energy dissipation (Peltier and Caulfield,
2003). The potential energy increase due to mixing processes is
in fact bounded by the product of power input (i.e. winds and
tides) and the mixing efficiency coefficient (Wunsch and Ferrari,
2004).

Mixing efficiency values are currently debated. One line of
thought assumes that the mixing efficiency in turbulent flows is
approximately constant at 0.2 (Osborn, 1980; Peters et al., 1995)
with a definition of ratio of buoyancy flux to turbulent energy dis-
sipation rate. Although this quantity has been used extensively by
the oceanography community to compute mixing in the ocean
(Gregg and Ozsoy, 2002; Peters and Johns, 2005), it conflicts with
the historical definition of efficiency as pointed out by Moum
(1996). The definition of ‘‘flux coefficient’’ (C) term by Osborn
(1980) might be more appropriate to use instead of mixing effi-
ciency. One can compute the mixing efficiency from flux coefficient
as l ¼ C=ð1þ CÞ � 0:166. Nevertheless the assumption of constant
0.2 mixing efficiency is consistent with the traditional view on the
ocean circulation as described in the following. Sandström (1908)
postulated that an overturning circulation cannot be maintained
in a closed domain if the buoyancy sources and sinks are at the
same geopotential level. This has fundamental implications for
ocean circulation since the ocean is both cooled and heated at
the surface (i.e. horizontal convection) (Ilıcak and Vallis, 2012).
After Sandström’s experiments, it was concluded that the ocean
cannot sustain a meridional overturning circulation (MOC) if
forced by buoyancy alone. An additional mechanical forcing is
required to maintain the MOC. Energy inputs from surface winds
and tides are the main candidates for this. Wunsch and Ferrari
(2004) estimated that 2 TW of mechanical energy is required to
maintain the MOC and that 1.5 TW of the total energy is coming
from internal tides. Most climate models employ internal tides
and bottom boundary layer parameterizations using the constant
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mixing efficiency of 0.2 (Simmons et al., 2004; Legg et al., 2006;
Dunne et al., 2012).

Another line of thought puts the 0.2 value under discussion.
Recent three-dimensional (3D) direct numerical simulations
(DNS) show that horizontal convection can have strong overturn-
ing and be highly efficient (Scotti and White, 2011). As a result,
mixing efficiency values between 0.8 and 0.9 are estimated
(Scotti and White, 2011; Gayen et al., 2013). These values necessi-
tate a change in our understanding of the ocean energy budget. If
buoyancy forcing at the surface can be responsible for strong over-
turning and the sinking regions are so efficient, this means that the
overall contribution of the other mechanical forcing mechanisms
might be overestimated in the traditional view.

There is more evidence which disagrees with the traditional
assumption of mixing efficiency being equal 0.2. Laboratory exper-
iments of two-layer exchange flows spanned a wide range of Rey-
nolds numbers (Re) up to 220,000 showed that the efficiency of
mixing saturates with a value around 0.11 for Re > 50,000
(Prastowo et al., 2008; Prastowo et al., 2009). Laboratory inter-
nal-wave breaking experiments found that mixing efficiency is
between 0.03 and 0.08 for waves of varied incident amplitudes
(Hult et al., 2011). There is also a wide spread of mixing efficiency
values in observations. Ruddick et al. (1997) found that mixing effi-
ciency decreases systematically with increasing density ratio and
increases systematically with increasing buoyancy Reynolds num-
ber in the North Atlantic Central Water. They also described previ-
ous values of efficiency of mixing from a variety of locations by
other observers (see their Table 2). These mixing efficiency values
are ranging from 0 to 0.4 (Ruddick et al., 1997). In the numerical
simulations of Caulfield and Peltier (2000) and Peltier and
Caulfield (2003), the evolution of a Kelvin–Helmholtz roll during
a transition from a 2D symmetric laminar flow to a fully 3D turbu-
lent state is investigated. The simulations show that the instanta-
neous mixing efficiency is much larger than 0.2, but it decreases
with time and the average mixing efficiency approaches a value
of 0.15. In similar simulations, Mashayek and Peltier (2011) found
that the time-averaged efficiency increases with increasing Re and
the mixing efficiency reaches values as large as 0.5. In addition,
Mashayek et al. (2013) employed direct numerical simulations of
shear-induced turbulence in stably stratified free shear flow. They
also showed that constant 0.2 mixing efficiency fails at higher
Richardson numbers provided that the Reynolds number is suffi-
ciently high. Smyth et al. (2001) investigated the time evolution
of mixing in turbulent overturns using both numerical simulations
and microstructure profiles obtained during field experiments.
They showed that mixing efficiency can change by more than an
order of magnitude over the life of a turbulent overturn. Pham
and Sarkar (2010) investigated the interaction between an unsta-
ble shear layer and a stably stratified jet showing that mixing
efficiency exceeds 0.2, especially in highly turbulent areas.

The aim of this study is to investigate the mixing efficiency
values in idealized gravity current simulations. A number of 3D
direct numerical simulations of lock-exchange flow are per-
formed. Such a choice is justified by the fact that the lock-
exchange experiment is highly relevant to gravity currents, over-
flows (Ilıcak et al., 2008) and exchange flows in the ocean (Ilıcak
Table 1
Numerical simulations setup and mixing efficiency values for Re = 3500. To resolve the Ko

Re ¼ 3500 # of grid points in x, y, z Grid resolutio

Exp1 576 � 36 � 72 D ¼ 1:38� 10
Exp2 1152 � 72 � 144 D ¼ 6:94� 10
Exp3 2304 � 144 � 288 D ¼ 3:47� 10
Exp4 3456 � 216 � 432 D ¼ 2:31� 10
et al., 2009; Ilıcak and Armi, 2010). In each of these shear- and
buoyancy-driven flows, mixing occurs through Kelvin–Helmholtz
instabilities. The advantage of the 3D lock-exchange problem is
that it contains different turbulent processes such as shear-driven
mixing, internal waves and gravitationally-unstable phases in an
enclosed domain (Özgökmen et al., 2009). The effect of Reynolds
number on the mixing efficiency is investigated. Different simula-
tions are conducted spanning a wide range of Re from 125 and to
10,000. Mixing of the density field is quantified using the back-
ground potential energy (Winters et al., 1995). Results indicate
that the mixing increases (i.e. background potential energy
increases) as the Reynolds number increases. For the low and
moderate Reynolds numbers, the mixing increases monotonically.
At Re ¼ 2500, the mixing efficiency saturates at around 0.12. All
mixing efficiency values are, however, consistently lower than
0.2.

The paper is organized as follows: In Section 2, the numerical
model and the parameters of all numerical simulations are
described. Results for the lock-exchange problem are presented
in Section 3. Finally, major findings are summarized in Section 4.

2. Model description and numerical setup

In this study, the non-hydrostatic version of MIT general circu-
lation model (MITgcm) is used with the Boussinesq approximation.
The MITgcm is a three dimensional C-grid fully incompressible
Navier Stokes equations model (Marshall et al., 1997). The non-
dimensional model governing equations are
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where u is the three dimensional velocity, p is the pressure, q0 is the
density perturbation and D=Dt is the material derivative. The non-
dimensionalization is performed using a characteristic velocity
(U0), a characteristic length scale (l0), a characteristic time scale
(s� ¼ l0=U0), density difference (Dq0) and pressure q0U2

0 for
u; x; q0, and p respectively. The initial Reynolds number
(Re ¼ U0l0=m) expresses the relative importance of viscous effects
where m is the molecular viscosity. The bulk Richardson number
(Ri0 ¼ gDq00:5H=ðq0DU2

0Þ) indicates the importance of stratification
and shear. Finally, the Prandtl number is defined as Pr ¼ m=j, where
j is the molecular diffusivity.

The non-dimensional computational domain is
0 6 x � 8; 0 6 y 6 1=2 and 0 6 z 6 1 since vertical depth is used
as the characteristic length scale, H ¼ l0. At all boundaries, no-
flow and free-slip boundary conditions are used for the velocity
components, while no-flux conditions are used for the density
perturbation q0. The lock-exchange problem is initialized with
dense fluid on the left separated from the light fluid on the right
lmogorov scale 94.2 million grid points are required.

n (D) Total # of points (N3) Mixing efficiency

�2 � 1:5 million 0.1312
�3 � 12 million 0.1019
�3 � 95 million 0.0956
�3 � 322 million 0.0955



Table 2
Reynolds number vs. number of grid points for the lock-exchange problem. The last
column shows required DNS grid points according to Pope (2000).

Re # of grid points in x, y,
z

Total number of points

(N3)
Re9=4

125 1152 � 72 � 144 � 12 million � 52000
500 1152 � 72 � 144 � 12 million � 1:1

million
1000 1152 � 72 � 144 � 12 million � 5:6

million
2500 2304 � 144 � 288 � 95 million � 47 million
3500 2304 � 144 � 288 � 95 million � 94 million
5000 3456 � 216 � 432 � 322 million � 210

million
6000 3456 � 216 � 432 � 322 million � 316

million
10,000 7680 � 480 � 960 � 3:5 billion 1 billion
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by a sharp interface with a sinusoidal perturbation in the y-direc-
tion with an amplitude of 0.125 to induce 3D turbulence. Adjust-
ment occurs in which lighter water moves above heavier water.
The Kelvin–Helmholtz (KH) rolls are observed due to the shear
between two layer exchange flow. The mixing takes place by
KH rolls stirring towards smaller scale, and their turbulent break-
down due to secondary instabilities in the cross-direction
(Özgökmen et al., 2009). In the lock-exchange problem, the char-
acteristic velocity is the frontal speed of the gravity current
which has an analytical form of U0 � 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gDq0H=q0

p
in the invis-

cid limit (Benjamin, 1968). Thus, the bulk Richardson number is
set to Ri0 ¼ 2. The Prandtl number is set to 7 in all cases since
the density is a function of temperature only. All simulations
were run for around ten gravity current travel times (i.e.
10l0=U0) along the length of the box.

Direct numerical simulations of the governing equations are
employed to ensure that all scales of motion are resolved includ-

ing the Kolmogorov length scale, kK ¼ m3

e

� �1=4
where e ¼ 2mSijSij is

the kinetic energy dissipation rate and Sij ¼ 1
2

@ui
@xj
þ @uj
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is the

strain rate tensor. Pope (2000) describes that the necessary num-
ber of grid points (N) in direct numerical simulations are propor-
tional to Re9=4 for homogeneous turbulence. However, in
stratified turbulence the Batchelor scale, kB ¼ kK=Pr1=2, should also
be resolved. Resolving the Batchelor scale is crucial for some
small scale processes such as double diffusion (i.e. salt fingers)
where different molecular diffusion coefficients of salinity and
temperature induce molecular scale mixing. In the next section,
effects of resolution on the mixing are investigated for a constant
Reynolds number. The appropriate spatial resolutions that resolve
energetics at all length scales will be chosen accordingly. We will
show that resolving the Batchelor scale is not necessary for the
diagnostics considered.

To quantify the dynamic regimes of the evolving flow fields,
time dependence of volume averaged energy terms are computed.
The potential energy (PE) and kinetic energy (KE) are computed
using PE ¼ g

R
V qzdV and KE ¼

R
V ðu2 þ v2 þw2ÞdV . Mixing between

water masses of different density is an irreversible process which
leads to an increase in the center of gravity. Changes in the mixing
are accurately computed by tracking changes in the background
potential energy, BPE (Winters et al., 1995). The BPE is a single glo-
bal number that reflects the effect of diapycnal mixing in a closed
system (Ilıcak et al., 2012). BPE is the minimum potential energy
obtained by sorting the density without mixing. To compute the
BPE, all water parcels are sorted, with the heaviest parcels at the
bottom and lighter parcels above. The sorting results in a redistri-
bution of the parcels throughout the model domain and a sorted
density state q�. The reference potential energy is then calculated
as the volume integral of the density-weighted geopotential:
BPE ¼ g
ZZZ

q�zdV : ð4Þ

The available potential energy, which might be converted into
KE, is simply defined as APE ¼ PE� BPE, whereas the total energy
is defined as TE ¼ PEþ KE. A brief summary of evolution equations
of different energy terms is discussed in the following. The poten-
tial energy equation may be written as (Caulfield and Peltier, 2000)

dPE
dt
¼ Ri0qwþDq ð5Þ

where Dq ¼ Ri0ðqbottom � qtopÞ=ðHRePrÞ is the positive definite
molecular diapycnal mixing due to molecular diffusion down the
mean vertical gradient, and represents a conversion of internal
energy to background potential energy. Ri0qw is the conversion
term between potential and kinetic energy. Following Caulfield
and Peltier (2000), the governing equations for BPE, APE and KE are

dBPE
dt
¼MþDq; ð6Þ

dAPE
dt
¼ Ri0qw�M; ð7Þ

dKE
dt
¼ �Ri0qw� e ð8Þ

where M is the irreversible mixing rate and e is the kinetic energy
dissipation rate. The mixing efficiency (l) can be defined in differ-
ent ways. A common definition of l is the ratio of irreversible mix-
ing (the increase in background potential energy of the density
field) to the sum of the irreversible mixing and the kinetic energy
dissipation (Peltier and Caulfield, 2003). Thus, mixing efficiency
can be defined as the following

l1 ¼
R t

0MðsÞdsR t
0 MðsÞdsþ

R t
0 eðsÞds

ð9Þ

and by definition it is always smaller than one. Note that, the defi-
nition of mixing efficiency used here is different from the one
defined by Osborn (1980). He defined a mixing efficiency function
C ¼ Rf =ð1þ Rf Þ where Rf is the flux Richardson number. Since a
Boussinesq model with linear equation of state is used in this study,
we do not account for effects of non-linear equation of state on mix-
ing efficiency discussed by Tailleux (2009).

3. Results

3.1. Effects of resolution on mixing

In this section, the resolution suitable for simulations involving
different Reynolds numbers is addressed. Four simulations with
different spatial resolutions at a constant Reynolds number of
3500 are conducted. The horizontal and vertical resolutions
employed here can be found in Table 1. Hartel et al. (1997) argued
that the model resolution should be related to D � ðRePrÞ�1=2 for
the DNS lock-exchange simulations. For Re = 3500 and Pr = 7, that
leads to D ¼ 6:388� 10�3 which is similar to the Exp2 in Table 1.
Note that the Kolmogorov dissipation scale is resolved (i.e.
N3 � Re9=4) starting from the third simulation (Exp3). Cross sec-
tional snapshots of the density field for different resolutions are
shown in Fig. 1. Kelvin–Helmholtz (KH) rolls are observed in all
cases. Density gradients sharpen with increased resolution. Two
vertical eddies (i.e. Kelvin–Helmholtz billows) break at x ¼ 3 and
x ¼ 5 for the first time since the beginning of simulations. The loca-
tions of KH rolls coincide in each of the simulations. The formation
of new water masses (light green and yellow) is due to irreversible
mixing. In the coarsest resolution case (Exp1), mixing is largest.



Fig. 1. Snapshots of density field for Re = 3500 at y = 0.25 using different resolutions; (a) Dx ¼ 0:0138, (b) Dx ¼ 6:94� 10�3, (c) Dx ¼ 3:47� 10�3, (d) Dx ¼ 2:31� 10�3.
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This qualitative argument will be quantified later using the evolu-
tion of the background potential energy. The logarithm of kinetic
energy dissipation (log10e) is shown in Fig. 2 for different resolu-
tions. The non-dimensional magnitude of e is on the order of
10�7 for Exp1 and of 10�8 for Exp2 simulations in high shear
regions. Exp3 and Exp4 cases have similar e fields with magnitude
of Oð10�9Þ, where most of the dissipation is associated with break-
ing of KH eddies (x ¼ 3 and x ¼ 5). Once again, high values of dis-
sipation rate indicate that the largest amount of mixing takes place
in Exp1. There are two reasons behind this. The first one is energy
exchanges occurring through buoyancy flux, viscous dissipation or
diabatic mixing (Winters et al., 1995). Increased viscous dissipa-
tion leads to an increased internal energy which contributes to
an increase in background potential energy through irreversible
mixing (Hughes et al., 2009). The second reason is spurious mixing.
Under resolved shear regions induce a large amount of numerical
mixing.

Fig. 3(a) presents the time evolution of the total energy, poten-
tial energy kinetic energy, background potential energy and avail-
able potential energy in Exp3. There are cyclic conversions
between KE, PE and APE due to the fluid motion in this enclosed
domain, whereas BPE increases monotonically due to irreversible
mixing and total energy (TE) decreases due to mixing and dissipa-
tion. Note that the energy terms are normalized by the initial total
energy which is equal to the initial PE since the fluid is at rest at
t=s� ¼ 0. The energetics shown here are consistent with those
described in Özgökmen et al. (2009) (see their Fig. 3) who
performed 3D DNS simulations with a high order spectral element
model. Fig. 3(b) shows the comparison between the KE time deriv-
ative and the sum of momentum dissipation and buoyancy conver-
sion terms. It is clear that energy equations are balanced in the
simulations as the two curves coincide at all times. This is impor-
tant to ensure and check that all scales of motions are resolved.

Fig. 4(a) depicts the evolution of relative background potential
energy (RBPE) over time for different spatial resolutions. Relative
background potential energy is defined as
RBPEðtÞ ¼ BPEðtÞ � BPEðt ¼ 0Þ
BPEðt ¼ 0Þ ð10Þ
which shows the relative increase of the BPE with respect to the ini-
tial state as a result of mixing. During the integration period, RBPE
increases monotonically due to irreversible mixing. The RBPE
curves from the Exp3 and Exp4 are similar (blue and black lines)
which is a clear indication of numerical convergence for the RBPE
metric. Since the grid Reynolds number exceeds 2 in Exp1, RBPE
is larger because of spurious numerical mixing (Ilıcak et al., 2012).
The maximum RBPE value reached 0.11 at t=s� ¼ 10. This is almost
55% larger than the highest resolution simulation Exp4 (blue line).
Özgökmen et al. (2009) also found increased mixing in a coarse
resolution simulation in their 3D dam-breaking case. Fig. 4(b)
shows time evolution of the tracer variance (v) for different simula-
tions. The tracer variance (or dissipation) term can be derived by



Fig. 2. Snapshots of logarithmic kinetic energy dissipation field (e) for Re = 3500 at y = 0.25 using different resolutions; (a) Dx ¼ 0:0138, (b) Dx ¼ 6:94� 10�3, (c)
Dx ¼ 3:47� 10�3, (d) Dx ¼ 2:31� 10�3.
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multiplying Eq. (3) by q0 (Winters and Young, 2009; Ilıcak and
Vallis, 2012) and expressed in a closed system as
v ¼ jrq0j2

RePr
: ð11Þ

The peaks in Fig. 4(b) indicate that tracer dissipates vigorously.
There is an early peak in v for the coarse resolution simulations.
There is an offset between high amount of mixing and the peak
of the tracer variance in all simulations. For the coarse resolution
the main peak is observed before t=s ¼ 2 while the BPE keeps
increasing. For the high resolution cases the main peak is of smaller
amplitude and lags behind the main peak of coarse resolution
cases. The local peaks of high-resolution simulations remain smal-
ler in amplitude until t=s ¼ 6, but become larger later on. We
believe that it is due to spurious numerical mixing in coarse-reso-
lution runs before t=s ¼ 6. This mixing removes the energy from
the system, so that the peaks become smaller afterwards. Once
again, evolution of tracer variance in high resolution simulations
is similar to each other. Finally, mixing efficiency values are com-
puted for different simulations. For Exp1, mixing efficiency is
around l ¼ 0:1312 which is much higher than the mixing efficien-
cies for the other cases. For Exp3 and Exp4, l converges to a value
of 0.0956 (Table 1). Note that since the dissipation is higher in the
coarse resolution case, the efficiency is large due to high amount of
irreversible mixing.
In summary, changing spatial resolution provides us with
insight as to which resolution is required for DNS. Our results indi-
cate that models with resolution coarser than the Kolmogorov
scale overestimate mixing and tracer variance. Numerical simula-
tions resolving down to the Kolmogorov scales are sufficient for
DNS in terms of evolution of RBPE, e and v metrics. Thus, DNS
resolving the Kolmogorov scale are conducted in the next section.
3.2. Simulations with increasing Reynolds number

In this section, eight different Reynolds numbers simulations
are conducted for the lock-exchange problem. The number of grid
points for the corresponding Re are given in Table 2. Total number
of grid points in all simulations are larger than the number of grid
points suggested by Pope (2000) to perform DNS. All simulations
are integrated until a non-dimensional time of t=s� ¼ 10 where
s� ¼ L=U0 is the advection time scale.

Fig. 5 shows a cross section of the density fields in the middle of
the domain by the time the counterpart gravity currents reach the
side walls at different Reynolds numbers. The flow is laminar in the
Re ¼ 125 and Re ¼ 500 cases. Two KH rolls are visible in the
Re ¼ 1000 simulation. As Re is increased, KH rolls become more
distinct, e.g, at Re ¼ 2500 and Re ¼ 3500. The initial 2D KH rolls
break down due to a 3D convective instability (Klaassen and
Peltier, 1991), in which the stream-wise vortices stretch and tilt
the span-wise vorticity concentrated in KH rolls (Özgökmen
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et al., 2009). There are more rapid developments of 3D flow struc-
tures, and secondary instabilities started to destroy the KH over-
turns for the first time at around x � 3:2 and x � 5:1 in higher
Reynolds number simulations since KH rolls cannot sustain their
lateral structure. Snapshots of the logarithmic kinetic energy dissi-
pation field are shown in Fig. 6. In the laminar cases, e is higher at
the nose of the gravity currents where e is of magnitude Oð10�7Þ.
Results indicate that the dissipation rate is lower in the KH rolls
than in the rest of the shear region in the Re ¼ 1000 case. The high
dissipation field is visible as a strain region between two KH rolls.
As the Re is increased, the magnitude of e is reduced to Oð10�10Þ at
the interface between the two layers.

Time evolutions of the relative background potential energy are
provided in Fig. 7 for different Reynolds numbers. In the lowest
Reynolds number experiment (Re ¼ 125), the kinetic energy dissi-
pates very quickly since the flow is laminar (panel 6(a)). This leads
to a smearing of the interface between the upper and the lower
layers. Thus, the relative background potential energy increases
rapidly in the Re ¼ 125 simulation (gray line in Fig. 7). In the
Re ¼ 500 simulation, the mixing is reduced significantly since the
kinetic energy dissipation is decreased. For the rest of the experi-
ments, RBPE increases as the Reynolds number increases after
Re ¼ 1000. Initial 2D mixing due to KH vortices occurs before
t=s� � 2:5. After that time, a vigorous amount of mixing occurs
due to 3D turbulence since the flow has sufficiently large Reynolds
number.

Next, mixing efficiency values will be compared for different Re
simulations. In addition to (9), Prastowo et al. (2008) proposed a
new definition of mixing efficiency, which can be written in the
case of complete run-down of the exchange flow to a final state
of no motion, as

l2 ¼
PEf � BPEi

PEi � BPEi
¼ PEf � BPEi

APEi
ð12Þ

where PEf is the final potential energy (note that subscripts i and f
imply initial and final conditions, respectively). Eq. (12) defines the
mixing efficiency as the ratio of how much irreversible mixing
occurs at the expense of available potential energy of the system.
Laboratory experiments performed by Prastowo et al. (2008) and
Prastowo et al. (2009) showed that the mixing efficiency in two-
layer exchange flows with constrictions saturates around
l2 � 0:11� 0:01. In the lock-exchange flow, the initial background
potential energy is BPEi ¼ PEi=2 where PEi is the initial potential
energy. Thus, the initial available potential energy of the system
is also equal to APEi ¼ PE� BPE ¼ PEi=2. Therefore, an analytical for-
mulation can be derived for Eq. (12) using the final state of the lock-
exchange flow. The flow is at rest and well-stratified, so PEf ¼ BPEf .
If both the numerator and denominator are divided by BPEi, an ana-
lytical value for mixing efficiency is obtained as

lan
2 ¼

ðBPEf � BPEiÞ=BPEi

APEi=BPEi
: ð13Þ

Özgökmen et al. (2009) showed that in the final mixing state
ðBPEf � BPEiÞ=BPEi ¼ 1=9 and initially APEi ¼ BPEi, thus
lan

2 ¼ 1=9 � 0:111 which is consistent with laboratory observations.
Arneborg (2002) also suggested a similar analytical function for



Fig. 5. Snapshots of density field at y = 0.25 and at s ¼ 0:6125 for (a) Re = 125, (b) Re = 500, (c) Re = 1000, (d) Re = 2500, (e) Re = 3500, (f) Re = 5000, (g) Re = 6000, (h)
Re = 10,000.
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mixing efficiency. He proposed a mixing efficiency of 0.11 should be
used in the oceans, lakes and fjords.

The mixing efficiency values computed using Eqs. (9) and (12)
are shown in Fig. 8 as a function of Reynolds number. In the previ-
ous method (Eq. (9)), the cumulative mixing efficiency (l1)
increases monotonically from Re ¼ 125 to Re ¼ 1000 and then l1

saturates around 0.1 for Re ¼ 2500; Re ¼ 3500; Re ¼ 5000,
Re ¼ 6000 and Re ¼ 10;000 (black circles in Fig. 8). The new
method to compute efficiency (l2) is qualitatively similar to that
previously applied. As the Reynolds number increases, so does
the mixing efficiency until Re ¼ 103, and it then saturates around
0:12� 0:02. There are some quantitative differences between the
two methods. The second method results in values of mixing effi-
ciency that are lower than the first for low and high Reynolds num-
bers. However, at intermediate Re number cases, an opposite
behavior can be observed. Note that the simulations are not inte-
grated to full no-motion state. Thus, the definition of the BPEf

might not be accurate and this might be an explanation of the dif-
ferences between the two mixing efficiency values. Because of
computational limitations, higher Re numbers and/or longer simu-
lations were not feasible. Note that over 3.5 billion grid points are
employed for the Re ¼ 104 case. The key result in this study is that
all mixing efficiency values computed here are lower than 0.166.
This is consistent with the values of l measured in Prastowo
et al. (2008). However, it has to be mentioned that Prastowo
et al. (2008) found that saturation of mixing efficiency occured
after Re = 50,000 since their definition of Reynolds number is
slightly different than ours. They used the constriction length scale
in their Reynolds number and they also used higher density ratios
in the lab experiments.
4. Discussion and concluding remarks

Mixing of fluids is a great interest for understanding geophysi-
cal fluid flows, especially in the ocean where mixing of water
masses maintains the large scale vertical ocean stratification. One
of the open questions in oceanography concerns the energetics of
the overturning circulation. There is an ongoing debate regarding
the magnitude of mixing required to sustain this circulation
(Hughes et al., 2009). Resolving this issue is outside the scope of
this paper. Here, energetics and the mixing efficiencies of high Rey-
nolds number turbulent gravity currents are investigated. We con-
ducted idealized lock-exchange flow experiments using at
different Reynolds numbers.

Idealized laboratory and numerical experiments always have
limitations compared to realistic oceanic flows. For instance, when
we integrated the simulations long enough, the sloshing effect due
to the solid walls became an important process. This sloshing effect
is not important in some overflows (e.g. the Mediterranean over-
flow) but it can be crucial in others (e.g. the Red Sea overflow).
Ilıcak et al. (2009) showed that in the Bosphorus Strait, the
exchange flow interacts with the lateral boundaries when the grav-
ity current flows in the s-shaped channel. Nevertheless, the 3D
lock-exchange problem is a very good test case since it contains
different turbulent processes at the same time.

The main results are the following. Firstly, the effect of spatial
resolution is investigated at a relatively high Reynolds number of
3500. Four different simulations are carried out with different res-
olutions. Our results indicate that resolving Kolmogorov scale is
sufficient, and resolving the Batchelor scale is not necessary in
terms of evolution of relative background potential energy, tracer



Fig. 6. Snapshots of logarithmic dissipation field at y = 0.25 and at s ¼ 0:6125 for (a) Re = 125, (b) Re = 500, (c) Re = 1000, (d) Re = 2500, (e) Re = 3500, (f) Re = 5000, (g)
Re = 6000, (h) Re = 10,000.
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variance and kinetic energy dissipation fields. It is important to
emphasize that the models are not converged in pure numerical
sense, but they do so in the sense of metrics defined above. Coarse
resolution simulations overestimate the total amount of mixing.
Next, eight simulations of different Reynolds numbers are
employed at Ri ¼ 2 in the lock-exchange test case. These simula-
tions are for Re ¼ 125; 500; 1000; 2500; 3500; 5000; 6000 and
finally Re ¼ 10;000. Two different methods are employed to com-
pute the mixing efficiency (Eqs. (9) and (12)). There are two differ-
ent regimes in the behavior of mixing efficiency. It increases
linearly with the Reynolds number provided Re is small (less than
2000), and saturates at 0:12� 0:02 for moderate and higher Rey-
nolds numbers. A high amount of momentum dissipation and mix-
ing occurs when KH rolls break down. The mixing efficiency values
are consistent with Prastowo et al. (2008), who obtained approxi-
mately l ¼ 0:11� 0:01 in laboratory studies of high Reynolds
number buoyancy-driven exchange flow in a channel with a
constriction.

The results provided here suggest that the bulk mixing effi-
ciency in buoyancy-shear driven flows (such as gravity currents)
might saturate around 0.12 at high Reynolds number which is a
typical characteristic of geophysical flows. However in the oceans,
internal gravity waves and lee waves are some of the crucial pro-
cesses that sustain the interior stratification. Coarse resolution
ocean general circulation models cannot represent the mixing
associated with these processes and so they employ various dia-
pycnal mixing parameterizations, often assuming the same mixing
efficiency of 0.2 for all processes. Examples of these parameteriza-
tions are: internal wave parameterizations and gravity current bot-
tom boundary layer mixing parameterizations (Simmons et al.,
2004; Legg et al., 2006). However, it is known that Kelvin–Helm-
holtz rolls, observed in gravity currents, are also one of the main
mechanisms of mixing in breaking internal waves and lee waves
(Troy and Koseff, 2005; Abe and Nakamura, 2013). Thus, mixing
efficiency might be smaller than the traditional value attributed
to these processes. Note that the oceanography community uses
the flux coefficient C defined by Osborn (1980) as the canonical
value of mixing efficiency in their parameterizations. However,
as previous studies suggest mixing efficiency should be defined
as l ¼ C=ð1þ CÞ which leads to l � 0:166 which is still higher
than values found in here.

If the mixing efficiency is less than 0.2 in some cases in the
ocean, this means that ocean general circulation models are miss-
ing a key component of the energy budget (Arneborg, 2002). This
might be diapycnal mixing due to mesoscale eddies (Nikurashin
et al., 2013), open ocean deep water convection, double diffusive
process or some other ocean physical processes. Although more
investigation is required to make a definitive conclusion, present
numerical results indicate that the traditional assumption of a
constant value for the efficiency of mixing for all processes is an
over-simplification.
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