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Natural convection heat transfer in rectangular enclosures is an active research area, due to its sig-
nificance for both fundamental interest and engineering applications such as thermal management of
electronic components. In this present numerical study, combined conduction and natural convection
have been analysed for one or two heat sources mounted on substrates in an enclosure. For one heat
source, the substrate is mounted on a vertical wall, and for the case of two heat sources, the substrates
are mounted vertically and horizontally. Buoyancy forces drive the fluid flow. The Picard method with
a hybrid grid system is utilized to decouple between pressure and velocity components, resulting in
componentwise splitting. Linear systems obtained via the Picard method have been solved by the
ADI method, resulting in directional splitting. Effects of different parameters such as Prandtl number,
Rayleigh number, and boundary conditions on the temperature and flow field have been analysed.

Keywords: Operator splitting; Componentwise splitting; Directional splitting

AMS Subject Classifications: 65N99; 65F10

1. Introduction

The increased power dissipation of today’s integrated circuits has made the understanding of
thermal constraints important to those who manufacture and use these devices. In industrial
applications, if heat dissipation systems are implemented untested, developed strictly by trial-
and-error, server systems may fail due to heat build-up and component wear. As the density
of circuits increases, so does the need to develop effective methods of thermal management
and packaging [1–7].

Although radiation has an important role in the heat transfer inside an enclosure, the
major heat transfer mode is convection. In addition, enclosure boundary conditions, including
the location and orientation of the substrate on which the heat source is located, affect the
temperature field significantly.

Madhavan and Sastri [8] conducted a parametric study considering natural convection
cooling of a heat source mounted on a substrate vertically within an enclosure, neglecting radi-
ation. They investigated the significance of different dimensionless parameters like Prandtl,
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Rayleigh and Nusselt numbers, and discussed possible choices for the enclosure boundary con-
ditions. They utilized a nonstaggered grid structure, and with the help of a power-law scheme,
they determined the velocity values on the faces of their finite-volume cells. The SIMPLEC
algorithm was used to resolve the coupling between velocities and pressure appearing in the
governing equations.A direct method, Gauss Elimination, was used to solve the resulting tridi-
agonal matrices. They stated that Rayleigh number, Prandtl number and enclosure boundary
conditions strongly affect the fluid flow and heat transfer characteristics.

Sezai and Mohamad [9] studied natural convection heat transfer due to a discrete heat
source on the bottom of an enclosure. Navier–Stokes equations are solved by using a multigrid
technique applied to three-dimensional staggered grids discretized with the help of the finite
volume method and a third-order QUICK scheme. They studied the effects of Rayleigh number,
chip aspect ratio and sidewall boundary conditions on the rate of heat transfer.

Dağtekin and Öztop [10] conducted a numerical study considering heat transfer and fluid
flow of two heated vertical plates within an enclosure. The algebraic equations, obtained from
transport equations with the help of finite volume discretization, were solved using a line-
by-line TDMA with the SIMPLEM algorithm. For convective terms a power-law difference
scheme, and for diffusion terms a central difference scheme were used, as recommended, for
this algorithm. They found that the position of heat sources significantly affected the flow
field.

Numerical solutions to the full Navier–Stokes equations usually require considerable com-
puter memory and computational speed. Many numerical simulations of Navier–Stokes
equations become increasingly difficult (converge slowly or even diverge) as the ratio of
convection to diffusion increases. To overcome this problem, a multigrid approach is used in
our study. Various applications of multigrid techniques to fluid-flow problems can be found
in the literature [11–14].

In the present study, combined conduction and natural convection heat transfer modes have
been analysed for an enclosure in three dimensions with heat generating components over
substrates which are mounted horizantally and vertically. Fluid flow is driven by buoyancy
forces and no additional pressure gradient is implemented. Effects of different parameters
such as Rayleigh number, Prandtl number, heat source values of different magnitudes, on the
temperature and flow fields are studied. Operator splitting is performed at three different levels:
componentwise splitting results in the linearization of the differential/difference equations,
except for the velocity term, for which we perform the second level of splitting. Directional
splitting further simplifies the difference equations.

2. Mathematical modelling

Conservation of mass, momentum and energy equations are solved to determine the velocity
components, pressure and temperature distributions inside an enclosure.

The energy equation is coupled with the Navier–Stokes equations, but it is quasi-linear;
the convective terms involve products of unknown variables, i.e. components of the velocity
vector and the temperature gradients.

Momentum equations of the Navier–Stokes model, however, are nonlinear. The acceleration
terms involve products of the velocity vector and the columns of the velocity gradient tensor.
We define two different “kinds” of velocities to overcome the nonlinearity in the momen-
tum equations. That is one example of splitting, the second level mentioned above that we
utilize in our model. “Dynamic” velocity components are computed at the centres of the
control volume cells, similar to the unknown, i.e. temperature, of the energy equation, while



D
ow

nl
oa

de
d 

B
y:

 [A
N

K
O

S
 2

00
7 

O
R

D
E

R
 C

on
so

rti
um

] A
t: 

15
:0

9 
16

 J
ul

y 
20

07
 Operator splitting techniques in heat transfer 785

“kinematic” velocity components are defined at the walls of the control volume. Hence, the
left-hand sides of the Navier–Stokes equations are linearized and take a form similar to that
of the energy equation. The unknown velocity vector in the material derivative operator of
the convective/acceleration terms, referred to as the “kinematic” velocity, is now treated sep-
arately, split from the velocity vector or momentum per unit mass, i.e. the unknown variable
of the Navier–Stokes equation. An additional constraint is included in the analysis, which
requires the equivalence of the solutions for the “kinematic” and “dynamic” velocities.

Subscripts identify the splitting as the velocity components appear in the differential equa-
tions given below. The governing equations in three-dimensional Cartesian coordinates, at
steady state, in dimensionless form become as follows:
Continuity Equation:

∂Ud

∂X
+ ∂Vd

∂Y
+ ∂Wd

∂Z
= 0 (1)

X-momentum:

∂(UkUd)

∂X
+ ∂(VkUd)

∂Y
+ ∂(WkUd)

∂Z
= −∂P

∂X
+ Pr

(
∂2Ud

∂X2
+ ∂2Ud

∂Y 2
+ ∂2Ud

∂Z2

)
(2)

Y-momentum, with the Boussinesq approximation for the buoyancy term:

∂(UkVd)

∂X
+ ∂(VkVd)

∂Y
+ ∂(WkVd)

∂Z
= −∂P

∂Y
+ Pr

(
∂2Vd

∂X2
+ ∂2Vd

∂Y 2
+ ∂2Vd

∂Z2

)
+ PrRaθ

(3)

Z-momentum:

∂(UkWd)

∂X
+ ∂(VkWd)

∂Y
+ ∂(WkWd)

∂Z
= −∂P

∂Z
+ Pr

(
∂2Wd

∂X2
+ ∂2Wd

∂Y 2
+ ∂2Wd

∂Z2

)
(4)

Energy:

∂(Ukθ)

∂X
+ ∂(Vkθ)

∂Y
+ ∂(Wkθ)

∂Z
=

(
∂2θ

∂X2
+ ∂2θ

∂Y 2
+ ∂2θ

∂Z2

)
. (5)

For the volumetric heat-generating conducting solid body, the energy equation becomes

(
ks

∂2θ

∂X2

)
+

(
ks

∂2θ

∂Y 2

)
+

(
ks

∂2θ

∂Z2

)
= S (6)

where the dimensionless variables are

X = x

L
U = u

(α/L)
θ = (T − Tc)

�T
�T = q ′′′H

kf

Y = y

L
V = v

(α/L)
P = p

ρ(α/H)2
Pr = ν

α

Z = z

L
W = w

(α/L)
S = q ′′′H

kf �T
Ra = gβ�T H 3

να
.

(7)

Two different types of boundary conditions are used in this study. In one of them (BC 1) all
six walls are isothermal, and in the other (BC 2) five walls are insulated but only top wall is
isothermal.
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3. Solution procedure

In order to obtain a computational solution to the partial differential equations of the fluid
motion, first these equations must be converted to algebraic equations. The finite volume
method is used as the discretization procedure. The Picard method is used to resolve the
coupling between momentum and energy equations. This can be viewed as a componentwise
splitting. With the exception of velocity components, the Picard method eliminates nonlinear-
ity. Each velocity component is further split into two, as dynamic and kinematic components,
as explained above. Since the equations are now quasi-linear, convective/acceleration terms
involve products of the unknown variables of different equations due to the coupling between
the equations, but no products of an unknown variable with itself or its derivatives. The
iterations are arranged according to the SIMPLE algorithm [15] by Patankar and Spalding [16].

After discretization and linearization of the governing equations, a directional splitting
technique,ADI, namelyAlternating Direction Implicit, is used to solve the system of equations.
This method further splits each equation in the system of equations into three sets of equations,
which can then be solved in sequence. In each sweep, we solve the equation in one particular
direction, while the derivatives in the other two directions, those representing velocity and
pressure gradients, are treated as known values, and appear as source terms. Following the
splitting of the system of equations, the ADI method utilizes a tri-block-diagonal solver.

The Picard method is an iterative method. In this study we have eight unknowns,
Ud, Vd, Wd, Uk, Vk, Wk , pressure and temperature, with five governing equations, which
are the continuity equation, three momentum equations and the energy equation. Dynamic
and kinematic velocity components that are computed separately at the centre and walls of
the control volume, respectively, are equated using an averaging scheme: at the next itera-
tion, at each grid point and for each velocity component, the average of the “dynamic"and
“kinematic"values is used as the initial guess.

It is clear that momentum equations are for velocity components and temperature is solved
by the energy equation. Since pressure does not appear in the continuity equation, we have to
make some algebraic calculations for pressure correction.

When we discretize x-, y- and z-momentum equations we get,

aP uP =
∑

anbunb + (pw − pp)Au + buP

aP vP =
∑

anbvnb + (ps − pp)Av + bvP

aP wP =
∑

anbwnb + (pb − pp)Aw + bwP

(8)

where aP ’s are the coefficients of the velocity components at a grid point P. Variable subscript
nb is used for points in the neighbourhood of the control volume, centred at P. After the
discretization process, we obtain the above linear combination of the velocity components
at point P and at the neighbouring points. Hence, anb’s are the coefficients of the velocity
components at grid points in the neighbouring cells. The specific values of aP and anb are
dependent on the choice of discretization scheme. We use an upwind scheme for the first-order
derivatives, and a central scheme for the second-order derivatives.

Au, Av and Aw are the cell face areas perpendicular to the velocity components u, v and w

respectively.
b∗P s are the source terms, which arise from the energy equation coupling in they-momentum

equation, for an internal point P, or from the effects of boundary conditions for a boundary
point P.

We first solve the above set of equations and name them as approximations p∗, u∗, v∗, w∗,
to pressure and velocity components respectively. Each equation is linear and is solved using
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an iterative linear solver, namely ADI. The explicit application of the method assumes that the
coefficients aP and anb values are constant for this initial solve to obtain the approximations
p∗, u∗, v∗, w∗, even though these coefficients may depend on p, u, v, w. However, since
we have split the “kinematic” variables from these unknown variables, our system is linear.
Hence, the Picard method is applied implicitly.

One can define the pressure and velocity corrections p
′
, u

′
, v

′
and w

′
, respectively, as the

difference between their exact and approximate values, to get

aP u′
P =

∑
anbu

′
nb + (p′

w − p′
p)Au

aP v′
P =

∑
anbv

′
nb + (p′

s − p′
p)Av

aP w′
P =

∑
anbw

′
nb + (p′

b − p′
p)Aw.

(9)

Omission of the
∑

anbu
′
nb,

∑
anbv

′
nb and

∑
anbw

′
nb terms is the main approximation of the

SIMPLE algorithm [15].

uP = u∗
P + Au

aP

(p′
w − p′

p)

vP = v∗
P + Av

aP

(p′
s − p′

p)

wP = w∗
P + Aw

aP

(p′
b − p′

p).

(10)

This is for a grid point P. We can easily write down similar relations for the neighbouring
grid points; E (east), W (west), N (north), S (south), T (top) and B (bottom). Substitution of
the corrected velocities of equations into the discretized continuity equation gives

Au{[u∗
E + dE(p′

P − p′
E)] − [u∗

W + dW(p′
W − p′

P )])}
+ Av{[v∗

N + dN(p′
P − p′

N)] − [v∗
S + dS(p

′
S − p′

P )]}
+ Aw{[w∗

T + dT (p′
P − p′

T )] − [w∗
B + dB(p′

B − p′
P )]} = 0 (11)

where

di = Aj

ai

. (12)

Here the index i stands for the grid location and the index j for the velocity component. To
solve for the pressure correction, first we have to solve the momentum equations, since d terms

Figure 1. A typical finite volume cell with split velocity representation (2-D version).
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in the pressure equation contain the velocity components. With new values for u∗,v∗ and w∗,
the pressure can now be solved. The pressure correction equation is susceptible to divergence
unless some under-relaxation is used during the iterative process and new, improved, pressure
pnew values are obtained with

pnew = p∗ + αpp′ (13)

where αp is the pressure under-relaxation factor. The velocities are also under-relaxed. The
iteratively improved values are obtained from

unew = αuu + (1 − αu)u
old

vnew = αvv + (1 − αv)v
old

wnew = αww + (1 − αw)wold.

(14)

uold , vold and wold are velocity component values taken from the previous iteration. After the
new values are computed, convergence must be checked.

Our system of discretized differential equations forms a heptadiagonal Jacobian matrix. Uti-
lizing a directional splitting technique can surpass the difficulty of solving this heptadiagonal
matrix. In this study, ADI (Alternating Direction Implicit) is used. The main idea behind this
method is the splitting of this heptadiagonal matrix into a set of tridiagonal matrices [17], which
are processed sequentially. This representation is Seidel-like. For a parallel implementation
one should prefer a Jacobi-like representation.

4. Results and discussion

4.1 Effects of physical parameters

The Prandtl number Pr is the ratio of the momentum and thermal diffusivities. It provides
a measure of the relative effectiveness of momentum to energy transport by diffusion, in
the velocity and thermal boundary layers, respectively. This means that when Pr increases,
momentum diffusivity is dominant to thermal diffusivity. Decrease of thermal diffusivity
affects the thermal profile, making it non-toroidal. The Pr number affects the maximum tem-
perature, Tmax, in the domain, significantly. Madhavan and Sastri [8] state that the fluid which
has a Pr = 25 is the most suitable choice for this cooling problem because it has the minimum
Tmax.

The V -component is the most dominant one within all of the velocity components and rep-
resents the primary upward fluid motion in the enclosure. However the value of V -component
is very low at the bottom region, which means that the fluid is practically stagnant there.
Increasing the Rayleigh number increases the vertical velocity, since the fluid is driven by the
buoyancy force.

As the Rayleigh number increases, maximum temperature decreases. That is expected since
heat transfer from the component to the fluid increases with increasing Rayleigh number. The
transition to convective regime occurs in the range of Ra from 103 to 105.At low Rayleigh num-
bers, an imbalance between the superposed effects of conduction and convection is reflected
in a slow approach to the convective regime. The transition ends at Ra = 105. Increasing Ra

also increases the buoyancy effect and an increase in the buoyancy effect results in a decrease
in the temperature gradient inside the enclosure and reduces the maximum temperature value
over the component surface significantly. It is to be expected that, as the Rayleigh number
increases, convection may become stronger and the convective heat transfer becomes more
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Figure 2. Variation of Tmax with Rayleigh number for different Prandtl numbers.

important. This means that the heat is mostly conveyed by the dominating convection. At high
Rayleigh numbers and at all boundary conditions, heat dissipated from the component cannot
affect the fluid below the component. In this region ambient temperature does not change.
The reason for this is the high cooling capacity of the upper enclosure wall. Especially at
high Rayleigh numbers, the upper wall, when subjected to ambient temperature, is capable of
removing heat dissipated from the component. In figure 2, the effects of different Rayleigh
numbers with different Prandtl numbers on Tmax can easily be seen.

4.2 Effects of boundary conditions

We have two different types of boundary conditions; in one case, all walls are at the ambient
temperature, and in the other, only the top wall is at that temperature while the rest are
insulated. The primary objective, keeping in mind the practical constraints, is to maintain the
component temperature as low as possible by maintaining simple boundary conditions for
the enclosure walls. The best way to maintain the temperature at a minimum level is to have
isothermal conditions along its enclosure walls. This in turn would result in higher maintenance
or cooling cost [8]. In order to be cost effective, however, all the walls, except the top wall
where the gradients are high, are to be maintained at adiabatic conditions.

Fluid flow in the enclosure mainly consists of two circulating cells. The primary circulation
is the result of the buoyancy force acting on the fluid. The secondary cell is a result of a
combination of the splitting of fluid flow at the upper enclosure wall and heat transfer from the
fluid to the enclosure wall containing the heat source. However, the chance of the formation
of the secondary cell is weak, due to the insulation of the left wall. The Tmax for BC 1 is less
than for BC 2 due to to the increased heat transfer area of the enclosure walls.

4.3 Multigrid implementation

Some iteration methods like Jacobi and Gauss–Seidel are called “smoothers"since high fre-
quency parts of the error (with respect to the stepsize of the grid) are reduced very rapidly,
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Figure 3. Isotherms (side view) at Pr = 25 and Ra = 106 with BC 1.

Figure 4. Isotherms (side view) at Pr = 25 and Ra = 106 with BC 2.

whereas low frequency error is reduced much more slowly. Thus, after a few iterations, we
get a still quite big, but very smooth error. Instead of these methods, when multigrid is used,
smooth errors can be represented well on a coarser grid, and on a coarser grid the error is less
smooth with respect to the step size of the grid and can thus be reduced faster by a smoother on
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this grid than on the original fine grid. In this present study when the single domain solution
is used, the convergence rate deteriorates as the number of iterations increases. However, with
the help of the multigrid method, with a coarse grid correction process to eliminate smooth
errors, the convergence rate improves when the number of iterations increases, as shown in
figure 7. In the multigrid code, a three-level V-cycle is used.

It is important to note that the main goal of the paper is to study operator splitting tech-
niques at various levels, to formulate an efficient method for convection–diffusion operators.
Multi-grid implementation is included here just to improve the convergence characteristics.
We do not intend to emphasize the use of multi-grid techniques in relation to operator split-
ting. On the other hand, multi-grid/level techniques are very effective in solving systems
of differential equations, whether they are applied to Newton- or Picard-linearized nonlin-
ear equations or directly used as nonlinear solvers, for example, FAS (Full Approximation
Scheme). Equation-wise splitting may still be useful then, if one uses either decoupled or
distributive relaxations. For the case of distributive relaxation, decoupled relaxation follows
a suitable transformation [18].

5. Concluding remarks

A numerical study has been performed to observe the effects of Rayleigh number, Prandtl
number and boundary conditions on the solution of natural convection heat transfer from one
or multiple heat sources mounted horizontally or vertically on substrates within enclosures.
To speed up the rate of convergence some splitting techniques are implemented at every step
of the solution.

One type of splitting operation in this study is to differentiate between the velocity variables,
according to the way it appears in the governing equations. They are named dynamic and

Figure 5. Isotherms of two chips at Pr = 5 and Ra = 106 with BC 1.
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Figure 6. Isotherms of two chips at Pr = 5 and Ra = 106 with BC 2.

kinematic velocities. The former is defined at the centre of the control volume and the latter
is defined at the wall of the control volume. Another splitting is componentwise, known as
the Picard Method. It resolves the coupling between pressure and velocities. Another splitting
applied in this study is directional splitting, know as the Alternating Direction Implicit (ADI)
method. Hence, the linear system of algebraic equations obtained through the Picard method
is solved by the ADI Method. The main characteristic of this method is to split the system
into three sweep directions, which are the generalized coordinates directions. After splitting

Figure 7. Convergence graphics for singlegrid (top) and multigrid (bottom) at Pr = 5 and Ra = 105.
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heptadiagonal matrices into tridiagonal matrices, these tridiagonal matrices can be solved
easily by tridiagonal matrix solvers.

A multigrid method has been used to increase the convergence rate by eliminating smooth
errors. A V-cycle method has been used in the multigrid algorithm. The first coarser grid
calculation is used as a preconditioner and the second one to eliminate smooth errors.

At the end of this study some physical results have been obtained for the model problem.
These are: (1) heat transfer and fluid flow are strongly affected by Rayleigh number and
boundary conditions; (2) Tmax is affected especially by the Prandtl number; (3) convection
heat transfer mode plays a more significant role in the heat transfer inside the enclosure
when the Rayleigh number starts to increase; (4) using a multigrid reduces the residual norms
significantly.
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